Search results for "Batch test"

showing 4 items of 4 documents

Batch Test Evaluation of Four Organic Substrates Suitable for Biological Groundwater Denitrification

2014

Nitrates pollution represents nowadays a serious issue related to the quality of groundwater; continuous growth of industrial-scale agricultures lead to an increase of nitrates content in groundwater in the last years. Several technologies have been validated as capable to promote in situ biological nitrates remediation, such as permeable reactive barriers (PRB), biotrench, biobarriers etc. These technologies are all characterised by the use of organic substrate that act as a slow release carbon source. In free dissolved oxygen absence, such organic carbon is further oxidised, by heterotrophic bacteria naturally present in soil, in compliance to anoxic metabolism by using nitrates bound oxy…

Biological groundwater Denitrificationlcsh:Computer engineering. Computer hardwareSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleOrganic carbon source.lcsh:TP155-156lcsh:TK7885-7895Batch testlcsh:Chemical engineeringChemical Engineering Transactions
researchProduct

Sequential Batch Membrane BioReactor treating saline wastewater

2015

A sequential batch membrane bioreactor treating high strength salinity wastewater has been investigated. The salt effects on carbon and nutrient removal, fouling behaviour as well as biomass kinetics have been analysed. Salinity was increased at step of 2 g NaCl L-1 per week. The total COD removal efficiency was high (93%) along the entire experimental campaign. However, the biological contribution on the COD removal efficiency was reduced with the increase of salinity. The lowest nitrification removal efficiency (63%) was obtained at 10 g NaCl L-1 salinity due to the lower nitrifier activity. Regarding membrane fouling, the irreversible cake deposition was the predominant fouling mechanism…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleSalinity biological processes membrane fouling respirometric batch tests.
researchProduct

Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity

2016

In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2 g NaCl L-1 per week up to 10 g NaCl L-1. The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10 g NaCl L-1 due to lower nitri…

Membrane foulingSalinityRespirometric batch testEnvironmental EngineeringBiofoulingOrganic carbon and nitrogen removal0208 environmental biotechnologyBiomassPilot ProjectsBioengineering02 engineering and technologyWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesBioreactorsWaste ManagementExtracellular polymeric substanceBioreactorBiomassWaste Management and Disposal0105 earth and related environmental sciencesBiological Oxygen Demand AnalysisFoulingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingEnvironmental engineeringMembranes ArtificialGeneral MedicinePulp and paper industryNitrificationCarbon020801 environmental engineeringSalinityWastewaterExtracellular polymeric substances; Membrane fouling; Organic carbon and nitrogen removal; Respirometric batch tests; Salinity; Bioengineering; Environmental Engineering; Waste Management and DisposalNitrification
researchProduct

Water Resource Recovery Facilities (WRRFs): The Case Study of Palermo University (Italy)

2021

The wastewater sector paradigm is shifting from wastewater treatment to resource recovery. In addition, concerns regarding sustainability during the operation have increased. In this sense, there is a need to break barriers (i.e., social, economic, technological, legal, etc.) for moving forward towards water resource recovery facilities and demonstration case studies can be very effective and insightful. This paper presents a new water resource recovery case study which is part of the Horizon 2020 EU Project “Achieving wider uptake of water-smart solutions—Wider Uptake”. The final aim is to demonstrate the importance of a resource recovery system based on the circular economy concept. The r…

Waste managementWater supply for domestic and industrial purposesCircular economyCircular economyGeography Planning and DevelopmentHydraulic engineeringWastewater treatmentAquatic ScienceBiochemistryVolatile fatty acidsWastewaterWater smart solutionsSustainabilityEnvironmental scienceSewage treatmentBatch testcircular economy; wastewater treatment; water resource; water smart solutionsTC1-978TD201-500Water resourceWater Science and TechnologyResource recoveryWater; Volume 13; Issue 23; Pages: 3413
researchProduct